
Chapter 2 — MIPS Program Flow Instructions 1

COMPUTERORGANIZATION AND DESIGN
The Hardware/Software Interface

5th
Edition

Chapter 2

MIPS Program Flow
Instructions

MIPS-32 ISA Review

n Instruction Categories
n Computational
n Load/Store
n Jump and Branch
n Floating Point

R0 - R31

PC
HI
LO

Registers

op

op

op

rs rt rd sa funct

rs rt immediate

jump target

3 Instruction Formats: all 32 bits wide

R format

I format

J format

Chapter 2 — MIPS Program Flow Instructions 2

MIPS I-type Instructions

MIPS I-type Instructions

Chapter 2 — MIPS Program Flow Instructions 3

n MIPS conditional branch instructions:
bne $s0,$s1,Lbl #go to Lbl if $s0¹$s1
beq $s0,$s1,Lbl #go to Lbl if $s0=$s1

n Ex: if (i==j) h = i + j;

bne $s0, $s1, Lbl1
add $s3, $s0, $s1

Lbl1: ...

MIPS Control Flow Instructions

§ Immediate Format (I format):

0x05 16 17 16 bit offset

§ How is the branch destination address specified?

Specifying Branch Destinations

n Use a register (like in lw and sw) added to the 16-bit offset
n The register used is the Program Counter (the PC);

n Its use is automatically implied by the instruction.
n This type of addressing is called PC relative.

n This limits the branch distance to -213 to +213-1 instructions from
the branch instruction, but most branches are local anyway.

PC
Add

32

32 32
32

32

offset
16

32

00

sign-extend

from the low order 16 bits of the branch instruction

branch dst
address

?
Add

4 32

Chapter 2 — MIPS Program Flow Instructions 4

Branching Far Away

n What if the branch destination is further away than
can be captured in 16 bits?

§ The assembler comes to the rescue – it inserts an
unconditional jump to the branch target and inverts the
condition

beq $s0, $s1, L1

becomes

bne $s0, $s1, L2
j L1

L2:

n We have beq, bne, but what about other kinds of
branches (e.g., branch-if-less-than)? For this, we need yet
another instruction, slt

n Set on less than instruction:

slt $t0, $s0, $s1 # if $s0 < $s1 then
$t0 = 1 else
$t0 = 0

n Instruction format (R format):

n Alternate versions of slt
slti $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...
sltu $t0, $s0, $s1 # if $s0 < $s1 then $t0=1 ...
sltiu $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...

In Support of Branch Instructions

0 16 17 8 0x24

Chapter 2 — MIPS Program Flow Instructions 5

More Branch Instructions
n Can use slt, beq, bne, and the fixed value of 0 in

register $zero to create other conditions:
n less than blt $s1, $s2, Label

n less than or equal to ble $s1, $s2, Label
n greater than bgt $s1, $s2, Label
n great than or equal to bge $s1, $s2, Label

slt $at, $s1, $s2 #$at set to 1 if
bne $at, $zero, Label #$s1 < $s2

§ Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the
assembler:
§ Its why the assembler needs a reserved register ($at –

register 1).

n MIPS also has an unconditional branch instruction or
jump instruction:

j label #go to label

Other Control Flow Instructions

§ Instruction Format (J Format):

0x02 26-bit address

PC
4

32

26

32

00

from the low order 26 bits of the jump instruction

Chapter 2 — MIPS Program Flow Instructions 6

n MIPS procedure call instruction:

jal ProcedureAddress #jump and link

n Saves PC+4 in register $ra (register 31) to have a link to
the next instruction for the procedure return.

n Machine format (J format):

n Then, return from the procedure with a:
jr $ra #return

n Instruction format (R format):

Instructions for Accessing Procedures

0x03 26 bit address

0 31 0x08

Six Steps in Execution of a Procedure

n Main routine (caller) places parameters in a place where
the procedure (callee) can access them:
n $a0 - $a3: four argument registers.

n Caller transfers control to the callee.
n Callee acquires the storage resources needed.
n Callee performs the desired task.
n Callee places the result value in a place where the caller

can access them:
n $v0 - $v1: two value registers for result values.

n Callee returns control to the caller:
n $ra: one return address register to return to the point of origin.

Chapter 2 — MIPS Program Flow Instructions 7

Recap

n MIPS branch instructions (i-type)
n MIPS jump instructions (j-type)
n Procedure calls
n Next – Booth’s recoding algorithm

