M COMPUTER ORGANIZATION AND DESIGN

MORGAN KAUFHANN The Hardware/Software Interface

| Chapter 2

Instructions

I MIPS Program Flow

| MIPS-32 ISA Review

I Instruction Categories
= Computational
= Load/Store
= Jump and Branch
= Floating Point

3 Instruction Formats: all 32 bits wide

Registers

RO - R31

PC |

HI |

LO |

| funct | Rformat

|op |rs |rt|rd|sa
[rt

[op [rs | immediate | I format
[op I jump target | J format

Chapter 2 — MIPS Program Flow Instructions

| MIPS I-type Instructions
|

Add Immediate ADDI | 810 rs rd immediate
Add Immediate Unsigned ADDIU | 910 $s $d immediate
Set on Less Than Immediate SLTI | 1049 $s $d immediate
Set on Less Than Immediate Unsigned | SLTIU | 1149 $s $d immediate
And Immediate ANDI | 1249 $s $d immediate
Or Immediate ORI | 1349 $s $d immediate
Exclusive Or Inmediate XORI | 1449 $s $d immediate
Load Upper Immediate LUI | 1540 019 $d immediate
Branch on Equal BEQ I 449 rs n offset
Branch on Not Equal BNE | 510 s n offset
Branch on Less Than or Equal to Zero BLEZ | 610 rs 019 offset
Branch on Greater Than Zero BGTZ | 710 rs 019 offset
Branch on Less Than Zero BLTZ | 110 s 019 offset
Branch on Greater Than or Equal to Zero BGEZ | 110 s 110 offset
Branch on Less Than Zero and Link BLTZAL | 110 s 16 offset
Branch on Greater Than or Equal to Zero and Link | BGEZAL | 110 s 17 offset
.
| MIPS I-type Instructions
l Instruction name Mnemonic A Format Encoding
Load Byte LB | 3249 rs rt offset
Load Halfword LH | 3310 rs r offset
Load Word Left LWL | 3449 rs rt offset
Load Word Lw | 3519 rs rt offset
Load Byte Unsigned LBU | 3619 rs rt offset
Load Halfword Unsigned | LHU | 3710 rs rt offset
Load Word Right LWR | 3849 rs rt offset
Store Byte SB | 4049 rs r offset
Store Halfword SH | 4149 rs rt offset
Store Word Left SWL | 4249 rs rt offset
Store Word SW | 4319 rs rt offset
Store Word Right SWR | 4649 rs rt offset

Chapter 2 — MIPS Program Flow Instructions

MIPS Control Flow Instructions

MIPS conditional branch instructions:

bne $s0,$sl,Lbl
beq $s0,$sl1,Lbl

Ex: if (i==j) h =1 + 7;
bne $s0, $sl1, Lbll
add $s3, $s0, S$sl

Lbll:

Immediate Format (I format):

L oxos | 16 1 17 | 16 bit offset |

How is the branch destination address specified?

Specifying Branch Destinations

Use a register (like in Iw and sw) added to the 16-bit offset

The register used is the Program Counter (the PC);
Its use is automatically implied by the instruction.
This type of addressing is called PC relative.

This limits the branch distance to -213 to +213-1 instructions from

the branch instruction, but most branches are local anyway.

from the low order 16 bits of the branch instruction
16

sign-exte

[L lod

branch dst

> D
32 328ndd address
[PC M2\ 32 ' :
A 4 32

Chapter 2 — MIPS Program Flow Instructions

#go to Lbl if $s0#S$sl
#go to Lbl if $s0=S$sl

Branching Far Away

What if the branch destination is further away than
can be captured in 16 bits?

The assembler comes to the rescue — it inserts an
unconditional jump to the branch target and inverts the

condition
beq $s0, $sl1, Ll
becomes
bne $s0, $sl1, L2
3 L1
L2:

In Support of Branch Instructions

| We have beq, bne, but what about other kinds of
branches (e.g., branch-if-less-than)? For this, we need yet
another instruction, s1t

Set on less than instruction:

slt $t0, $s0, S$sl # if $s0 < $si1 then
St0 =1 else
5t0 =0

Instruction format (R format):
L o 416 | 171 8 | [oxoa |

Alternate versions of s1t

slti s$t0, $s0, 25 # 1f $s0 < 25 then $t0=1 ...
sltu $t0, $s0, S$sil # if $s0 < $sl1 then $t0=1 ...
sltiu $t0, $s0, 25 # if $s0 < 25 then $t0=1 ...

Chapter 2 — MIPS Program Flow Instructions

More Branch Instructions

assembler:

register 1).

slt $at, $sl, $s2 #Sat
bne $at, $zero, Label #$sl1

less than or equal to ble $sl1, $s2,
greater than bgt $s1, $s2,
great than or equal to bge $s1, $s2,

Canuse s1t, beq, bne, and the fixed value of 0 in
register Szero to create other conditions:
less than blt $sl, $s2, Label

set to 1 if
< $s2

Label
Label
Label

Such branches are included in the instruction set as
pseudo instructions - recognized (and expanded) by the

Its why the assembler needs a reserved register (Sat -

Jjump instruction:

Instruction Format (J Format):

j label #go to label

Other Control Flow Instructions

MIPS also has an unconditional branch instruction or

[_ox02 | 26-bit address

from the low order 26 bits of the jump instruction

32

Chapter 2 — MIPS Program Flow Instructions

Instructions for Accessing Procedures

MIPS procedure call instruction:
jal ProcedureAddress #jump and link

Saves PC+4 in register $ra (register 31) to have a link to
the next instruction for the procedure return.

Machine format (J format):

[oxo3 | 26 bit address

Then, return from the procedure with a:
jr Sra freturn

Instruction format (R format):

L o [31 | | [[oxo8 |

Six Steps in Execution of a Procedure

Main routine (caller) places parameters in a place where
the procedure (callee) can access them:
$a0 - $a3: four argument registers.
Caller transfers control to the callee.
Callee acquires the storage resources needed.
Callee performs the desired task.

Callee places the result value in a place where the caller
can access them:
$v0 - svl: two value registers for result values.

Callee returns control to the caller:
$ra: one return address register to return to the point of origin.

Chapter 2 — MIPS Program Flow Instructions

Recap

MIPS branch instructions (i-type)
MIPS jump instructions (j-type)
Procedure calls

Next — Booth’s recoding algorithm

Chapter 2 — MIPS Program Flow Instructions

